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Abstract. We use concepts from communication theory to character-
ize information hiding schemes: the amount of information that can be
hidden, its perceptibility, and its robustness to removal can be modeled
using the quantities channel capacity, signal-to-noise ratio, and jamming
margin. We then introduce new information hiding schemes whose pa-
rameters can easily be adjusted to trade o� capacity, imperceptibility,
and robustness as required in the application. The theory indicates the
most aggressive feasible parameter settings. We also introduce a tech-
nique called predistortion for increasing resistance to JPEG compression.
Analogous tactics are presumably possible whenever a model of antici-
pated distortion is available.

1 Introduction

In this paper, we discuss schemes for imperceptibly encoding extra information in
an image by making small modi�cations to large numbers of its pixels. Potential
applications include copyright protection, embedded or \in-band" captioning
and indexing, and secret communication.

Ideally, one would like to �nd a representation that satis�es the conict-
ing goals of not being perceivable, and being di�cult to remove, accidentally
or otherwise. But because these goals do conict, because it is not possible to
simultaneously maximize robustness and imperceptibility, we will introduce a
framework for quantifying the tradeo�s among three conicting �gures of merit
useful for characterizing information hiding schemes: (1) capacity (the number
of bits that may be hidden and then recovered) (2) robustness to accidental
removal, and (3) imperceptibility. We will then present new information hiding
schemes that can be tailored to trade o� these �gures of merit as needed in
the particular application. For example, capacity may be more important in a



captioning application, robustness may be most desired for copyright protec-
tion schemes, and imperceptibility might be favored in a secret communication
scenario.

1.1 Information theoretic view of the problem

We view an image in which extra information has been embedded as an approx-
imately continuous (in amplitude), two-dimensional, band-limited channel with
large average noise power. The noise is the original unmodi�ed image, which
we will refer to as the cover image, and the signal is the set of small modi�ca-
tions introduced by the hider. The modi�cations encode the embedded message.
We will refer to the modi�ed, distribution image as the stego-image, following
the convention suggested at the Information Hiding Workshop. From this point
of view, any scheme for communicating over a continuous channel|that is, any
modulation scheme|is a potential information hiding scheme, and concepts used
to analyze these schemes, such as channel capacity, ratio of signal power to noise
power, and jamming margin can be invoked to quantify the trade-o�s between
the amount of information that can be hidden, the visibility of that information,
and its robustness to removal.

1.2 Relationship to other approaches

In our framework, it becomes obvious why cover image escrow hiding schemes
such as those presented in [CKLS] and [BOD95] have high robustness to distor-
tion. In cover image escrow schemes, the extractor is required to have the original
unmodi�ed cover image, so that the original cover image can be subtracted from
the stego-image before extraction of the embedded message. Because the cover
image is subtracted o� before decoding, there is no noise due to the cover image
itself; the only noise that must be resisted is the noise introduced by distor-
tion such as compression, printing, and scanning. While the image escrow hiding
schemes must respect the same information theoretic limits as ours, the noise in
their case is very small, since it arises solely from distortions to the stego-image.

In our view, image escrow schemes are of limited interest because of their
narrow range of practical applications. Since the embedded message can only be
extracted by one who possesses the original, the embedded information cannot
be accessed by the user. For example, it would not be possible for a user's web
browser to extract and display a caption or \property of" warning embedded in
a downloaded image. The need to identify the original image before extraction
also precludes oblivious, batch extraction. One might desire a web crawler or
search engine to automatically �nd all illegal copies of any one of the many
images belonging to, say, a particular photo archive, or all images with a certain
embedded caption, but this is not possible with cover image escrow schemes (at
least not without invoking computer vision). Finally, even assuming that the
cover image has been identi�ed and subtracted out, the proof value of such a
watermark is questionable at best, since an \original" can always be constructed
a posteriori to make any image appear to contain any watermark. The only



practical application of cover image escrow schemes we have been able to identify
is �ngerprinting or traitor tracing[P�], in which many apparently identical copies
of the cover image are distributed, but the owner wants to be able distinguish
among them in order to identify users who have been giving away illegal copies.

The hiding methods presented in this paper are oblivious, meaning that the
message can be read with no prior knowledge of the cover image. Other oblivi-
ous schemes have been proposed [BGM91, Cor95], but the information-theoretic
limits on the problem have not been explicitly considered. We make comparisons
between our hiding schemes and these other oblivious schemes later in the paper.

In the next section, we will estimate the amount of information that can be
hidden (with minimal robustness) in an image as a function of signal-to-noise
ratio. The bulk of the paper is a description of some new hiding schemes that fall
short but are within a small constant factor of the theoretical hiding capacity.
In the implementations of these schemes presented in this paper, we have chosen
capacity over robustness, but we could have done otherwise. In the conclusion,
we return to the discussion of modeling the trade o�s between hiding capacity,
perceptibility, and robustness using the quantities channel capacity, signal-to-
noise, and process gain.

2 Channel Capacity

By Nyquist's theorem, the highest frequency that can be represented in our cover
image is 1

2

cycle
pixel . The band of frequencies that may be represented in the image

ranges from �1

2

cycle
pixel to +1

2

cycle
pixel , and therefore the bandwidth W available for

information hiding is 2� 1

2

cycle
pixel = 1 cyclepixel .

For a channel subject to Gaussian noise, the channel capacity, which is an
upper bound on the rate at which communication can reliably occur, is given by
[SW49]

C = W log2(1 +
S

N
)

Since the bandwidthW is given in units of pixel�1 and the base of the logarithm
is 2, the channel capacity has units of bits per pixel. For some applications
(particularly print) it might be desirable to specify the bandwidth in units of
millimeters�1, in which case the channel capacity would have units of bits per
millimeter.

This formula can be rewritten to �nd a lower bound on the S
N required

to achieve a communication rate C given bandwidth W . Shannon proved that
this lower bound is in principle tight, in the sense that there exist ideal sys-
tems capable of achieving communications rate C using only bandwidth W and
signal-to-noise S

N
. However, for practical systems, there is a tighter, empirically

determined lower bound: given a desired communication rate C and an available
bandwidth W , a message can be successfully received if the signal-to-noise ratio
is at least some small headroom factor � above the Shannon lower bound. The



headroom � is greater than 1 and typically around 3. [She95]

S

N
� �

�
2
C

W � 1
�

In information hiding, S
N < 1, so log

2
(1 + S

N ) may be approximated as S=N
ln 2

or about 1:44 S
N
.[She95] Thus S

N
� �

1:44
C
W
. So in the low signal-to-noise regime

relevant to information hiding, channel capacity goes linearly with signal-to-
noise.

The average noise power of our example cover image was measured to be 902
(in units of squared amplitude). For signal powers 1, 4, and 9 (amplitude2), the
channel capacity �gures are 1:6� 10�3 bits per pixel, 6:4� 10�3 bits per pixel,
and 1:4 � 10�2 bits per pixel. In an image of size 320 � 320, the upper bound
on the number of bits that can be hidden and reliably recovered is then 3202C.
In our cover image of this size, then, using gain factors of 1, 2, and 3 (units
of amplitude), the Shannon bound is 160 bits, 650 bits, and 1460 bits. With a
headroom factor of � = 3, we might realistically expect to hide 50, 210 or 490
bits using these signal levels.

3 Modulation Schemes

In the modulation schemes we discuss in this paper, each bit bi is represented by
some basis function �i multiplied by either positive or negative one, depending
on the value of the bit. The modulated message S(x; y) is added pixel-wise to
the cover image N (x; y) to create the stego-image D(x; y) = S(x; y) + N (x; y).
The modulated signal is given by

S(x; y) =
X
i

bi�i(x; y)

Our basis functions will always be chosen to be orthogonal to each other, so that
embedded bits do not equivocate:

< �i; �j >=
X
x;y

�i(x; y)�j(x; y) = nG2�ij

where n is the number of pixels and G2 is the average power per pixel of the
carrier.

In the ideal case, the basis functions are also uncorrelated with (orthogonal
to) the cover image N . In reality, they are not completely orthogonal to N ;
if they were, we could hide our signal using arbitrarily little energy, and still
recover it later.

< �i; N >=
X
x;y

�i(x; y)N (x; y) � 0

For information hiding, basis functions that are orthogonal to typical images are
needed; image coding has the opposite requirement: the ideal is a small set of
basis functions that approximately spans image space. These requirements come



in to conict when an image holding hidden information is compressed: the ideal
compression scheme would not be able to represent the carriers (bases) used for
hiding at all.

The basis functions used in the various schemes may be organized and com-
pared according to properties such as total power, degree of spatial spreading
(or localization), and degree of spatial frequency spreading (or localization). We
will now explain and compare several new image information hiding schemes, by
describing the modulation functions �i used.

3.1 Spread Spectrum Techniques

In the spectrum-spreading techniques used in RF communications[Dix94, SOSL94],
signal-to-noise is traded for bandwidth: the signal energy is spread over a wide
frequency band at low SNR so that it is di�cult to detect, intercept, or jam.
Though the total signal power may be large, the signal to noise ratio in any band
is small; this makes the signal whose spectrum has been spread di�cult to detect
in RF communications, and, in the context of information hiding, di�cult for a
human to perceive. It is the fact that the signal energy resides in all frequency
bands that makes spread RF signals di�cult to jam, and embedded information
di�cult to remove from a cover image. Compression and other degradation may
remove signal energy from certain parts of the spectrum, but since the energy
has been distributed everywhere, some of the signal should remain. Finally, if
the key used to generate the carrier is kept secret, then in the context of ei-
ther ordinary communications or data hiding, it is di�cult for eavesdroppers to
decode the message.

Three schemes are commonly used for spectrum spreading in RF communi-
cations: direct sequence, frequency hopping, and chirp. In the �rst, the signal
is modulated by a function that alternates pseudo-randomly between +G and
�G, at multiples of a time constant called the chiprate. In our application, the
chiprate is the pixel spacing. This pseudo-random carrier contains components
of all frequencies, which is why it spreads the modulated signal's energy over
a large frequency band. In frequency hopping spread spectrum, the transmitter
rapidly hops from one frequency to another. The pseudo-random \key" in this
case is the sequence of frequencies. As we will see, this technique can also be
generalized to the spatial domain. In chirp spreading, the signal is modulated
by a chirp, a function whose frequency changes with time. This technique could
also be used in the spatial domain, though we have not yet implemented it.

3.2 Direct-Sequence Spread Spectrum

In these schemes, the modulation function consists of a constant, integral-valued
gain factor G multiplied by a pseudo-random block �i of +1 and �1 values. Each
block �i has a distinct location in the (x; y) plane. In both versions of direct se-
quence spread spectrum we have considered, the blocks �i are non-overlapping
(and therefore trivially orthogonal); they tile the (x; y) plane without gaps. Be-
cause distinct basis functions �i do not overlap in the x and y coordinates, we



do not need to worry about interference and can write the total power

P �

X;YX
x;y

(
X
i

Gbi�i(x; y))
2 =
X
i

X;YX
x;y

(Gbi�i(x; y))
2 = G2XY = nG2

The de�nition holds in general, but the �rst equation only holds if the �i tile the
(x; y) plane without overlaps. Non-integral values of power can be implemented
by \dithering": choosing step values

g 2 (�G); (�G+ 1); : : : ; (�1); (0); (1); : : :; (G� 1); (G)

with probabilities p(g) such that the average power G2 =
P

g p(g)g
2.

The embedded image is recovered by demodulating with the original mod-
ulating function. A TRUE (+1) bit appears as a positive correlation value; a
FALSE (�1) bit is indicated by a negative correlation value. We have found
the median of the maximum and minimum correlation values to be an e�ective
decision threshold, though it may not be optimal. For this scheme to work, at
least one value of the embedded image must be TRUE and one FALSE. In the
version of direct sequence data hiding presented in [Cor95], a similar problem is
avoided by including 0101 at the beginning of each line.

A more sophisticated scheme would be to use a \dual-rail" representation in
which each �i is broken in two pieces and modulated with (�1)(1) to represent
FALSE and (1)(�1) to represent TRUE. Then to recover the message, each bit
can be demodulated twice, once with (�1)(1) and once with (1)(�1). Whichever
correlation value is higher gives the bit's value. This dual rail scheme also has
advantages for carrier recovery.

Bender et al.'s Patchwork algorithm[BGM91] for data hiding in images can
be viewed as a form of spread spectrum in which the pseudo-random carrier is
sparse (is mostly 0s) and with the constraint that its integrated amplitude be
zero enforced by explicit construction, rather than enforced statistically as in
ordinary spread spectrum schemes.

In the Patchwork algorithm, a sequence of random pairs of pixels is chosen.
The brightness value of one member of the pair is increased, and the other
decreased by the same amount, G in our terminology. This leaves the total
amplitude of the image (and therefore the average amplitude) unchanged. To
demodulate, they �nd the sum S =

Pn
i=1 ai � bi, where ai is the �rst pixel

of pair i, and bi is the second pixel of pair i. Notice that because addition is
commutative, the order in which the pixel pairs were chosen is irrelevant. Thus
the set of pixels at which single changes are made can be viewed as the non-zero
entries in a single two-dimensional carrier �(x; y). Bender et al. always modulate
this carrier with a coe�cient b = 1, but b = �1 could also be used. In this case,
the recovered value of s would be negative. If the same pixel is chosen twice in
the original formulation of the Patchwork algorithm, the result is still a carrier
�(x; y) with de�nite power and bandwidth. Thus Patchwork can be viewed as
a special form of spread spectrum (with extra constraints on the carrier), and
evaluated quantitatively in our information-theoretic framework.



Fully Spread Version We have implemented a \fully spread" version of direct
sequence spread spectrum by chosing a di�erent pseudo-random �i for each
value of i. This fully spreads the spectrum, as the second �gure in the second
column of Figure 2 shows. The �gure shows both space and spatial frequency
representations of the cover image, the modulated pseudo-random carrier, and
the sum of the two, the stego-image.

To extract the embedded message (to demodulate), we must �rst recover
the carrier phase. If the image has only been cropped and translated, this can
be accomplished by a two dimensional search, which is simple but e�ective.
The point at which the cross-correlation of the stego-image and the carrier is
maximized gives the relative carrier phase. We have implemented this brute force
carrier phase recovery scheme, and found it to be e�ective. Rotation or scaling
could also be overcome with more general searches.

Once the carrier has been recovered, we project the stego-image onto each
basis vector �i:

oi =< D;�i >=
X
x;y

D(x; y)�i(x; y)

and then threshold the oi values. We have used the median of the maximum and
minimum oi value as the threshold value. Note that for this to work, there must
be at least one bi = �1 and one bi = +1. Above we discussed more sophisticated
schemes that avoid this problem. Figure 2 shows the original input to be em-
bedded, the demodulated signal recovered from the stego-image, the threshold
value, and the recovered original input.

Tiled Version This scheme is identical to the \fully spread" scheme, except
that the same pseudo-random sequence is used for each �i. The �i di�er from one
another only in their location in the (x; y) plane. Unlike the fully spread version,
which is e�ectively a one-time pad, some information about the embedded icon
is recoverable from the modulated carrier alone, without a priori knowledge of
the unmodulated carrier. This information appears as the inhomogeneities in the
spatial frequency plane of the modulated carrier visible in Figure 3. If a di�erent
icon were hidden, the inhomogeneity would look di�erent. One advantage of the
tiled scheme is that carrier recovery requires less computation, since the scale of
the search is just the size of one of the �i tiles, instead of the entire (x; y) plane.
Given identical transmit power, this scheme seems to be slightly more robust
than the \fully spread" scheme.

These two spread spectrum techniques are resistant to JPEGing, if the mod-
ulated carrier is given enough power (or more generally, as long as the jamming
margin is made high enough). With carrier recovery, the two direct sequence
schemes are resistant to translation and some cropping. However, unlike the
frequency hopping scheme that we will describe below, the direct sequence ba-
sis functions are fairly localized in space, so it is possible to lose some bits to
cropping.



Predistortion In addition to simply increasing the signal to improve compres-
sion immunity, Figure 4 illustrates a trick, called predistortion, for increasing
the robustness of the embedded information when it is known that the image
will be, for example, JPEG compressed. We generate the pseudo-random carrier,
then JPEG compress the carrier by itself (before it has been modulated by the
embedded information and added to the cover image), and uncompress it before
modulating. The idea is to use the compression routine to �lter out in advance
all the power that would otherwise be lost later in the course of compression.1

Then the gain can be increased if necessary to compensate for the power lost
to compression. The once JPEGed carrier is invariant to further JPEGing using
the same quality factor (except for small numerical artifacts).2 Figure 4 shows
both the space and spatial frequency representation of the JPEG compressed
carrier. Note the suppression of high spatial frequencies. Using the same power
levels, we achieved error-free decoding with this scheme, but had several errors
using the usual fully spread scheme without the pre-distortion of the carrier.
Tricks analogous to this are probably possible whenever the information hider
has a model of the type of distortion that will be applied. Note that this version
of predistortion cannot be applied to our next scheme, or to the version of direct
sequence spread spectrum in [Cor95], because in these schemes carriers overlap
in space and therefore interfere.

3.3 Frequency Hopping Spread Spectrum

This scheme produces perceptually nice results because it does not create hard
edges in the space domain. However, its computational complexity, for both
encoding and decoding, is higher than that of the direct sequence schemes.

Each bit is encoded in a particular spatial frequency; which bit of the embed-
ded message is represented by which frequency is speci�ed by the pseudo-random
key. In our trial implementation of frequency hopping spread spectrum, however,
we have skipped the pseudo random key, and instead chosen a �xed block of 10
by 10 spatial frequencies, one spatial frequency for each bit. One advantage of
the frequency hopping scheme over the direct sequence techniques is that each
bit is fully spread spatially: the bits are not spatially localized at all. This means
that the scheme is robust to cropping and translation, which only induce phase
shifts.

An apparent disadvantage of the frequency hopping scheme is that because
the functions overlap in the space domain, the time to compute the modulated
carrier appears to be kXY , where k is the number of bits, instead of just XY ,

1 By compressing the carrier separately from the image, we are treating the JPEG
algorithm as an operator that obeys a superposition principle, which it does in an
approximate sense de�ned in the Appendix.

2 It should be apparent from the description of JPEG compression in the Appendix
that the output of the JPEG operator (or more precisely, the operator consisting of
JPEG followed by inverse JPEG, which maps an image to an image) is an eigenfunc-
tion and in fact a �xed point of that operator, ignoring small numerical artifacts.



the time required for the direct sequence schemes. However, the Fast Fourier
Transform (more precisely, a Fast Discrete Cosine Transform) can be used to
implement this scheme, reducing the time to XY log

2
XY . This is a savings if

log
2
XY < k. In our example, log

2
320� 320 = 16:6 and k = 100, so the FFT is

indeed the faster implementation.

Figure 5 illustrates the frequency hopping modulation scheme. The results,
shown in �gure 6, are superior to the direct sequence schemes both perceptually
and in terms of robustness to accidental removal. There is little need to threshold
the output of the demodulator in this case. However, encoding and decoding
require signi�cantly more computation time.

This scheme survived gentle JPEGing3 with no predistortion, as illustrated
in �gure 7.4

A disadvantage of this scheme for some purposes is that it would be relatively
easy to intentionally remove the embedded message, by applying a spatial �lter
of the appropriate frequency. A more secure implementation of the scheme would
disperse the frequencies from one another, to make this sort of �ltering opera-
tion more di�cult. The main disadvantage of this scheme relative to the direct
sequence schemes is that, even using the FFT, its computational complexity for
encoding and decoding is greater (XY logXY rather than XY ).

4 Discussion

We have suggested that information and communication theory are useful tools
both for analyzing information hiding, and for creating new information hiding
schemes. We showed how to estimate the signal-to-noise needed to hide a certain
number of bits given bandwidth W . A shortcoming of our channel capacity
estimate is that we used the capacity formula for a Gaussian channel, which
is not the best model of the \noise" in a single image, as a glance at any of
the frequency domain plots in the �gures will reveal. The Gaussian channel has
the same power at each frequency, but clearly these images do not, especially
after compression. A more re�ned theory would use a better statistical model
of the image channel, and would therefore be able to make better estimates
of the signal-to-noise needed to hide a certain number of bits. This would also
lead to better hiding schemes, since the signal energy could be distributed more
e�ectively.

3 All the JPEG compression reported here was done in Photoshop using the \high
quality" setting.

4 In fact, it is not possible to predistort in the frequency hopping scheme: because the
basis functions overlap, the resulting interference pattern depends strongly on the
particular values of the bits being encoded. There is no single pattern onto which
we can project the stego-image to recover the embedded data; we must (naively)
project it onto a sequence of vectors, or (more sophisticated) use the FFT. In either
case the idea of predistortion does not apply, at least not in the same way it did in
the non-overlapping direct sequence schemes.



The scheme we have called \frequency hopping" is superior perceptually, and
in terms of robustness to accidental removal, to the direct sequence schemes with
which we experimented. Direct sequence may be less vulnerable to intentional
removal, and wins in terms of computational complexity.

Assuming that the Gaussian channel approximation discussed above is not
too misleading, our capacity estimates suggest that there exist signi�cantly bet-
ter schemes than we have presented, capable of hiding several hundred bits in an
image in which we hid one hundred. Hybrid modulation/coding schemes such as
trellis coding are a promising route toward higher hiding densities. But better
models of channel noise (the noise due to cover images themselves, plus distor-
tion) would lead immediately to better capacity estimates, and better hiding
schemes.

In all the practical examples in this paper, we have tried to hide as much
information as possible using a given signal-to-noise. However, keeping signal-
to-noise and bandwidth �xed, communication rate can instead be traded for
robustness to jamming.The quantities known as jammingmargin and processing
gain in spread spectrum communication theory are helpful in capturing this
notion of robustness.

Processing gain is the ratio W
M

of available bandwidth W to the bandwidth
M actually needed to represent the message. Jamming margin, the useful mea-
sure of robustness, is the product of signal-to-noise and processing gain. If the
actual signal-to-noise ratio is S

N , then the jamming margin or e�ective signal-

to-noise ratio E
J
after demodulation is given by E

J
= W

M
S
N
. So robustness may

be increased either by increasing signal-to-noise (at the cost of perceptibility, as
we will explain in more detail below), or by decreasing the size of the embedded
message (the capacity), which increases the processing gain. For example, in the
case of our direct sequence schemes, the processing gain increases when we hide
fewer bits because each bit can be represented by a larger block. The Patchwork
hiding scheme referred to earlier sacri�ces communication rate entirely (hiding
just one bit) in order to buy as much robustness as possible.

Signal-to-noise ratio provides a rough estimate of perceptibility, because,
all other things being equal, the higher the signal-to-noise, the more visible
the modulated carrier will be. However, keeping signal-to-noise constant, some
carriers|particularly those with mid-range spatial frequencies, our experience
so far suggests|will be more more perceptible than others. So the crudest model
of perceptibilty is simply signal-to-noise ratio; a plausible re�nement might be
the integral over all spatial frequencies of the signal-to-noise as a function of
frequency weighted by a model of the frequency response of the human visual
system. Methods for quantifying visibility to humans might be a new theoretical
avenue to explore, and developing systematic methods for minimizing the vis-
ibility of hidden signals is certainly a challenge to information hiding practice.
The pre-distortion technique demonstrated in this paper can be viewed as a �rst
step in this direction, in the sense that successful compression schemes comprise
implicit, algorithmic models of the human visual system (the ideal compression
scheme would encompass a complete model of the human visual system). It



will be interesting to watch the development of information hiding schemes and
their co-evolutionary \arms race" with compression methods in the challenging
environment of the human visual system.



A Approximate superposition property for JPEG

operator

An operator O obeys superposition if Off + gg � (Offg + Ofgg) = 0. Each
coe�cient generated by the JPEG operator J satis�es �1 � Jff + gg� (Jffg+
Jfgg) � 1. In other words, JPEGing a pair of images separately and then adding
them yields a set of coe�cients each of which di�ers by no more than one quan-
tization level from the corresponding coe�cient found by adding the images �rst
and then JPEGing them (using the same compression parameters in both cases).

The proof is simple. For a gray scale image, the unquantized JPEG coe�-
cients Sij are found by expanding each 8� 8 block in a cosine basis. The �nal
quantized coe�cients aij are found by dividing each Sij by a quantization factor
qij (where each qij is greater than one, since the purpose of the JPEG represen-
tation is to decrease the �le size), and rounding toward zero[BH93]:

aij = b
Sij

qij
c

The cosine expansion is a linear operation, and therefore obeys superposition,
so (as long as qij > 1) we need only show that for any real numbers f and g,
�1 � bf + gc � bfc � bgc � 1. Without loss of generality, we may take f and g

to be non-negative and less than one, since the integer parts F and G of f and
g satisfy bF + Gc � bF c � bGc = 0 . So, for such an f and g, 0 � f + g < 2.
There are now two cases to consider. If 0 � f +g < 1, then bf +gc�bfc�bgc =
0 � 0 � 0 = 0. If 1 � f + g < 2 then bf + gc � bfc � bgc = 1 � 0 � 0 = 1.
Since f + g < 2, these are the only two cases. The case of f and g negative is
analogous, yielding a discrepancy of either �1 or 0. The discrepancy in the case
that f and g have opposite sign is less than in the same sign case. Therefore
each aij coe�cient produced by the JPEG operator satis�es our approximate
superposition principle, �1 � Jff + gg � (Jffg + Jfgg) � 1. Since each aij
coe�cient has a discrepancy of +1, 0, or �1, each Sij has a discrepancy of +qij,
0, or �qij. Thus the total power of the deviation from superposition (in either
the spatial frequency or pixel representation, by Parseval's theorem) is bounded
above by

P
ij q

2
ij. This explains why JPEGing the carrier separately from the

cover image is a reasonable predistortion tactic.
Note that the more aggressive the compression (the larger the qij values),

the larger the discrepancies, or deviations from superposition.
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Fig. 1. \Fully Spread" version of direct sequence spread spectrum. The left column
shows (from top to bottom) the space representation of the cover image, the modulated
carrier, and the stego-image. The right column is the spatial frequency representation
of the same three functions. The cover image has six bits of gray scale (0 � 63), and
the power per pixel of this particular cover image, that is, the noise power per pixel,
is 902 � 302. The carrier alternates between +2 and �2 in this �gure, so the signal
power per pixel is 22 = 4. We have added a constant c to the carrier to map the values
into a positive gray scale.
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Fig. 2. Demodulation of Fully Spread Scheme. Top: 100 bit input data icon to be em-
bedded. Second: normalized values after demodulation. Third: threshold value. Bottom:
Original input recovered by comparing demodulated values to threshold.
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Fig. 3. Tiled version of spread spectrum modulation scheme. Note the inhomogeneities
in the spatial frequency view of the modulated carrier. As in the fully spread scheme,
the noise power per pixel (the average power of the cover image) is 902, and the carrier
ranges between +2 and �2, for a signal power of 4 per pixel.
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Fig. 4. Predistortion of carrier by JPEG compression to compensate for distortion from
anticipated JPEG compression. The usual direct sequence carrier has been compressed
and uncompressed before being used to modulate and demodulate. JPEG compression
of the same quality factor will not alter the carrier further. The original average carrier
power was 16; after JPEGing the carrier by itself, the average carrier power dropped
to 8:8.
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Fig. 5. Frequency Hopping spread spectrum. Average signal power = 9:1 (units of
amplitude squared), and average noise power = 902.
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Fig. 6. Demodulation of Frequency Hopping spread spectrum.
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Fig. 7. Frequency Hopping spread spectrum, with JPEGed stego-image. The
stego-image D was created, JPEGed at high quality, uncompressed, and then demod-
ulated. To estimate the amount of signal lost to compression, we measured the average
power of jpeg(N + S) � N and found its value to be 5:6; the power in the carrier S
was 9:1, as Figure 5 showed. The carrier shown for illustration purposes in the �gure,
labeled c + JPEG(S(x; y)), is in fact JPEG(N + S) � N . The carrier used to create
the stego-image was in fact S(x; y).
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Fig. 8. Demodulation of Frequency Hopping spread spectrum, with JPEGed
stego-image. The compression took its toll: contrast this output �gure with the one
from �gure 6, which was so robust it needed no thresholding.


